
Annals of the Academy of Romanian Scientists 

Edition ONLINE                                         Physics Series 

ISSN 2066-8589 Volume 1, Number 2/2009 33 

 

SKEW PROJECTORS AND GENERALIZED OBSERVABLES 

IN POLARIZATION OPTICS 

Tiberiu TUDOR
1
 

Abstract. The non-Hermitian operators of the non-orthogonal multilayer optical 

polarizers represent observables in the sense of the generalized quantum theory of 

measurement. The intimate spectral structure of these polarizers can be disclosed in the 

frame of skew-angular vector bases and bi-orthonormal vector systems. We show that 

each of these polarizers corresponds to a skew projector, its operator is “generated” by a 

skew projector, in the sense of the spectral theorem of linear operators theory. Thus the 

common feature of all the polarizers (Hermitian and non-Hermitian) is that their 

“nuclei” are (orthogonal or skew) projectors ― the generating projectors. 

Keywords: non-Hermitian operators, non-orthogonal multilayer optical polarizers, skew-angular 

vector bases 

1. Introduction 

In the last decades some extensions of the standard Dirac – von Neumann 

measurement formalism in quantum mechanics were elaborated [1−5]. 

In the standard formalism, a measurement corresponds to a Hermitian operator 

yielding its eigenvalues as measurement results, with probabilities determined by 

the values of the orthogonal projection of the system state on the operator’s 

eigenvectors. In other words an observable is a “projection-valued measure” 

(PVM). 

In a fundamental paper by E. B. Davies and J. T. Lewis [6], the concept of 

generalized observable is described, which arise when two standard non-commuting 

observables A and B are measured one after the other. The class of observables is 

extended to the positive operator-valued measure (POVM). Particularly the POVM 

becomes a PVM when the two standard observables A and B commute. 

In the standard theory of quantum measurement the postulate of the repeatability 

plays a central role: if a physical quantity is measured twice in succession in a 

system, one gets the same value each time. This hypothesis is equivalent to the fact 

that the class of observables is restricted to (orthogonal) projectors. In the 

generalized theory of quantum measurement the postulate of repeatability is 

abandoned. 
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Well known, one of the clearest ways of introducing the conceptual and axiomatic 

framework of quantum mechanics is by analyzing the interaction of photons with 

polarizing optical devices in (mental) photon-by-photon experiments. The 

polarization state space being the simplest quantum state space (a bidimensional 

one), a good physical and mathematical insight is get when the analysis of the basic 

quantum concepts is pursued in such a space. 

So far, the polarization devices taken into account in this approach to the 

fundamentals of quantum mechanics (e. g. [7−10]) are exclusively of orthogonal 

kind (orthogonal eigenvectors; normal, more precisely Hermitian, operators). 

All the operators describing the basic, “canonical” polarizers (homogeneous linear, 

circular and elliptical ideal polarizers) are Hermitian [11, 12]. Thus they describe 

standard observables. 

But the polarization device operators provide the most natural frame for analyzing 

or for exemplifying the concepts of generalized quantum measurement theory. The 

widespread multilayer polarization devices are generally of non-orthogonal kind 

(non-orthogonal eigenvectors, non-normal operators) [12−14]. Moreover the two 

eigenstates corresponding to an arbitrary direction of propagation in some crystal 

are generally non-orthogonal [15, 16]. 

In [17] I have exemplified and analyzed in a quantum mechanical operatorial 

language some optical polarizers of non-orthogonal kind. They are inhomogeneous 

(two- and three-layer) polarizers. Each layer of such a polarizer is of orthogonal 

kind, i.e. its operator is Hermitian, it corresponds to a standard observable. But, 

because of the non-commutativity of these operators, the multilayer polarizer is of 

non-orthogonal kind. Its operator is non-Hermitian and, nevertheless, it corresponds 

to an observable. This is a very convincing, clear and simple (22 operator) 

example for the case considered by Davies and Levis [6] of generalized observables 

which arise in a series of two or more non-commuting standard observables. 

Recently, W. M. de Muynck [18] has given an alternative to the Lüders 

generalization of von Neumann projection, based on the notions of non-orthogonal 

projections and biorthonormal systems. This technique will be our departure point 

in the present paper. 

Again the optical polarization devices provide the most natural frame of applying 

and exemplifying these ideas. For the same reason: the space of polarization states 

in the simplest, a bidimensional one, which allows reaching a good, even intuitive, 

insight in these abstract ideas. 

The aim of this paper is to analyze some non-orthogonal inhomogeneous 

(multilayer) polarizers by means of the mathematical tools of non-orthogonal 

projections and biorthonormal systems. We shall see that this is the natural way of 
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interpreting the eigenexpressions and the physical action of this kind of polarizers. 

Their operators are not projectors, but each of them can be expressed on the basis of 

a unique (skew) projector conformly to the spectral theorem. This projector may be 

denominated the generating projector of the polarizer. 

2. The operators of some basic polarization devices 

Let us consider a linear device operator, normal or not, and an orthogonal basis 

   2,1,|  iSi in the polarization state space. Labeling by I  the identity 

operator and making use of the closure relation 

 
i

ii SS I||  , (1) 

we may write:  

 
 


2

1,

2

1,

||||||||II
ji ji

jijijjii SSSSSSSS DDDD . (2) 

The device operator may be uniquely expanded in a double series of “basic 

operators” || ji SS   associated with any orthogonal basis  || iS  of the vector 

space on which the operator is defined, here the polarization states (SOP) vector 

space. In this expansion all the elementary operators || ji SS   are of orthogonal 

kind: || ii SS   are orthogonal projectors,  jiSS ji  ||  are orthogonal 

converters (cross-projectors). In Willard Gibbs’ language, || ji SS   are dyads 

and the expansion (2) is a dyadics. Eq. (2) is the dyadics expansion of the operator 

D  expressed in Dirac’s formalism. 

If  iS|  is an orthonormal basis constituted by the eigenvectors of the device 

operator D  itself (case in which D  must be a normal operator): 

 iii SS || D   , (3) 

ijji SS  |   , (4) 

the expansion (2) reduces to: 





2

1

||
i

jii SSD   , (5) 

which expresses the spectral theorem for normal operators and expands the operator 

D  in terms of its (orthogonal) eigenprojectors. 

Eq. (5) gives the eigenexpression of the operator, whereas Eq. (2) is its improper 

expansion. 
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The basic polarization devices (homogeneous polarizers and retarders of various 

kinds) are all orthogonal devices. Their eigenvectors are orthogonal, their operators 

are normal and can be expressed in function of their (orthogonal, normal, 

perpendicular), projectors as follows: 

|||| mmmMMM EEEE  D  , (6) 

where we have labeled by indices M and m the major and the minor eigenvalues 

and eigenvectors [11] of the operator. 

Some usual orthogonal bases in the polarization state space are:   yx PP |,|  

(x, y linear polarized states), 
 090

|,|
 PP (linear polarized states of azimuth 

  and 090 ),   LR |,|  (right and left circularly polarized states). 

With this notation, the operator of an ideal x-polarizer, in its eigenbasis, is 

 0,1  mM   the orthogonal projector: 

||| xxP PP
x

P  , (7) 

the operator of an ideal linear polarizer of azimuth θ is: 

||| 
PPP P  , (8) 

that of a right-hand circular polarizer 

||| RRR P  , (9) 

a.s.o.  

The orthogonal retarders are devices of class SU(2). Their eigenvalues are situated 

on the unit circle in the complex plane. In a symmetrical form, 2/

,

 i

mM e  , 

where δ is the phase delay introduced by the retarder between its eigenvectors. As 

an example, the eigenform of the operator of a linear retarder δ whose major 

eigenvector is  PEM ||  takes the form: 

  |||| 00 9090

2/2/

| 



 








PPePPe ii

PR  . (10) 

All the expressions of the kind given above for the device operators are 

eigenforms of these operators: each operator is expressed in its proper basis. 

In order to build up the operator of a composite polarization device (“sandwich”) 

we have to develop the calculus coherently in a unique and adequate basis, i.e. we 

have to transpose the expression of all the operators of the various layers of the 

“sandwich” into the same, generally improper, basis. 

This transposition can be done by introducing the eigenexpression of the operator 



 

  

 Skew Projectors and Generalized Observables in Polarization Optics 37 

 

in Eq. (2) where iS|  will be taken the vectors of the new chosen basis. In this 

algorithm, scalar products between various SOP vectors will appear; these scalar 

products make the connection between the new basis and the old one. We give 

here the values of some such scalar products useful for the next calculi: 

 cos||  xx PPPP  , (11) 

 sin||  yy PPPP  , (12) 

  4/*

4545
2

1
1

2

1
|| 00

ieiLPPL   , (13) 

  4/*

4545
2

1
1

2

1
|| 00

ieiRPPR 


 . (14) 

By introducing successively the eigenforms (8) and (10) in (2) and making use of 

(11) – (12), one obtains the improper Cartesian   yx PP |,|  forms of the ideal 

polarizer and of the δ-retarder of azimuth θ, respectively: 

  yyxyyxxxP PPPPPPPP  |sin||||cossin||cos 22

| 


P  (15) 

    ||sincos 2/22/2

xx

ii

P PPee  



 
|R    

                                   ||||
2

sincossin2 xyyx PPPPi 


     

                                    ||cossin 2/22/2

yy

ii PPee         

                                  ||
2

sin2cos
2

cos xx PPi 













  

                                   ||||
2

sin2sin xyyx PPPPi 


     

                                  ||
2

sin2cos
2

cos yy PPi 













 .  (16) 

In these improper forms it is also evident that these operators are normal: all the 

constitutive projectors and converters are of perpendicular kind.  

3. Orthonormal and biorthonormal bases in the polarization state space 

Any device operator D , normal or non-normal, may be expanded in an 

orthonormal basis of polarization states  iS|  in the form (2). The equations 
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(15) and (16) give two examples of such decomposition: the improper operators of 

an ideal polarizer and of a δ-retarder, respectively, both of major axis azimuth θ, 

in the Cartesian SOP basis   yx PP ,| . Similar decompositions can be 

obtained for example in the orthonormal basis of circular polarized states 

  LR |, .  

The characteristic of such an improper expansion is that the operator is expressed 

generally by means of two orthogonal projectors and two orthogonal converters 

(e. g. ,|| xxx PP Q  | | ,y y yP P Q  | | ,yx x yP P C  | |xy y xP P C ). 

If the operator is normal, its expansion can be reduced to only one or two 

orthogonal (normal) projectors (e. g. xQ and yQ , if the operator is of Cartesian x-

y kind). This is its eigenexpression, (5), and we have given above some examples 

of such a proper expansion, for the operators of some canonical (hence 

orthogonal) polarization devices (7) − (10). 

This reduction of the improper expansion of the operator to its eigenexpression is 

not only a question of mathematical economy and of adequacy to the physical 

symmetry of the polarization device, but also one of the deeper understanding of 

the device structure: it reveals its eigenvectors, eigenvalues, eigenprojectors (the 

converters are eliminated), shortly all its intimate operatorial properties. 

Evidently, this is equivalent to the diagonalization of its matrix. 

For a non-orthogonal device, for its non-normal operator, this simple scheme does 

not work. As we shall see, eigenforms of these operators exist too, but they cannot 

be represented by means of some orthogonal projectors. In other words the 

spectral theorem can no longer be expressed in the form (5). 

Let us label by  2,1|  iEi  the non-orthogonal eigenvectors of a (non-normal) 

device operator D , corresponding to a (non-orthogonal) polarization device. Such 

a situation can be managed by means of a technique imported from 

crystallography, that of the reciprocal vectors or bi-orthogonal systems [19]. 

To the non-orthogonal system (here a pair) of vectors  iE|  we can associate 

another system of vectors  jF| , the reciprocal vectors, defined by the equation: 

ijij EF  |  . (17) 

That means that any vector of one set and any vector of the other set excluding its 

own conjugate are mutually orthogonal and that the conjugate vectors are 

“mutually normed” to unity. 

Having in view (17), it is straightforward that the operators: 
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|| ii FE   . (18) 

are idempotent. They are projectors in a generalized sense, they are skew, oblique 

projectors. By means of them, the spectral theorem can be regained for non-

orthogonal devices, in the form: 

|||| 222111 FEFE  D  . (19) 

4. Two twisted ideal linear polarizers 

The simplest non-orthogonal polarizer can be built up by means of two ideal 

homogeneous linear polarizers at some relative azimuth .2/,0    Let us 

consider, for the sake of simplicity, a horizontal linear polarizer followed by a 

linear polarizer of azimuth  . 

The device operator of this sandwich is: 

||cos|||||1 xxxPP PPPPPP
x

   


PPP  . (20) 

It is constituted by a sequence of two noncommuting orthogonal projectors and by 

consequence it is not a projector: it is straightforward that it is not idempotent. 

Nevertheless the operator (20) corresponds to an observable. For any SOP input it 

gives   -linearly polarized output. In terms of the generalized theory of quantum 

measurement, each of the constitutive orthogonal projectors P|
P  and 

xP|P corresponds to a PVM, whereas 1P  corresponds to a POVM. In other words 

1P  is a generalized observable. 

The eigenvectors and the eigenvalues of the linear polarizer (20) are: 

 PE || 1  ,     with     2

1 cos , (21) 

 yPE || 2  ,    with    02  . (22) 

The eigenvectors are not orthogonal, the device is of non-orthogonal kind, its 

operator is non-normal.  

Let us determine the biorthonormal conjugates of the eigenvectors (21), (22) of 

the operator (20). By using (17) we get: 

 xy PaFPFEF ||0|| 1121        

 cos/1,1cos|1|| **

111  aaPPaPFEF x   

 xPF
cos

1
| 1  (23) 
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Similarly one obtains: 


 0902

cos

1
|


PF  (24) 

With these four vectors, which constitute the biorthonormal system of 

eigenvectors of 1P  we form the mathematical entities (18): 

|| iii FE T  ,  

namely: 

xPPFE  
cos

1
|| 111T   , (25) 

090222
cos

1
||





PPFE yT   , (26) 

It is straightforward that they are idempotent. Hence, they are projectors. It is also 

evident that are not Hermitian, i.e. are not orthogonal projectors. But they are 

pseudoorthogonal, reciprocal exclusive: 

|| iii FE T  ,  

021 TT  , (27) 

 or, in this sense, complementary one to the other. 

 They verify also the completness equation: 

 


||||
cos

1
09021 


PPPP yxTT   

                              ||sin|cos
cos

1
xyx PPP  


  

                              yxy PPP |cos|sin|    

                            1|||| 21  QQyyxx PPPP  . (28) 

where we have labeled by iQ the perpendicular projectors on x and y. By 

consequence they provide a (non-orthogonal) decomposition of the unity. 

Let us analyze the physical signification of these two non-orthogonal projectors. 

We shall see that the projector 1T  projects any state vector S|  on  PE || 1  

along  yPE || 2  and the projector 2T  gives the projection on  yPE || 2  

along  PE || 1 . 
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Let us take the projection 1T , (25), of S| :  




 


P
SP

SPPS x
x |

cos

|
||

cos

1
|1T  . (29) 

Here  SPx |  is the orthogonal component of S|  on xP| , so that 

cos/|  SPx  is the component of S|  on P|  along yP| . Thus S|1T , 

(29), gives the projection of S|  on P|  along yP| . 

Similarly, one can see that the projector 2T  projects any state vector S|  on 

 yPE || 2  along  PE || 1 : 

 


SPPS y ||
cos

1
| 0902 

T 


 

yP
SP

|
cos

|090


  . (30) 

In (30), 


SP |090
 is the perpendicular projection of S|  on 

 090
|


P  and, 

hence 


cos/|090



SP  is the (skew, non-orthogonal) projection of S|  on 

 yPE || 2  along  PE || 1 . 

Thus, the two projectors 1T  and 2T  decompose any state vector S|  along the 

eigenvectors (eigenstates) (21) − (22) of the device (20), exactly like the 

eigenprojectors of an orthogonal device project any state vector along the 

orthogonal eigenvectors of the device; 1T  and 2T  are the eigenprojectors of the 

non-orthogonal device (polarizer) (20). They are skew projectors. 

The eigenvalue of 1P  corresponding to 2T  being 02  , (22), the spectral 

theorem for the polarizer (20) takes the form: 

111 TP   , (31) 

which is easy to verify with (20), (21) and (25). 

We have to note that while an orthogonal ideal polarizer (e.g. xx PP | ) is itself 

a projector, a non-orthogonal polarizer (e.g. (20)), is not a projector. That happens 

because its principal eigenvalue, (21), is not the unity. Therefore the operator of a 

non-orthogonal polarizer is only proportional (not equal) with its principal (non-

orthogonal) projector, as shows the spectral theorem equation (31). While an 

orthogonal polarizer is a (perpendicular) projector, a non-orthogonal polarizer 

only corresponds to a (non-orthogonal) projector. But physically each of them 

gives rise to projections (orthogonal and non-orthogonal, respectively) of any 

incident state on its principal eigenstate. In this sense they represent both 

observables (standard and generalized, respectively). 
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In terms of generalized theory of quantum measurement the operator (20) 

corresponds to a POVM. Indeed its nonzero eigenvalue is positive:  2

1 cos  . 

Finally we note that twisted stacks of N linear polarizers have been recently taken 

into consideration in the frame of Berry’s phase analysis [20]. 

5. Horizontal linear polarizer followed by a half-wave linear retarder of 

azimuth θ/2. 

Such a sandwich is used in the half-shade analyzer of the polarimeters. Again we 

are faced with a   -linear polarizer: the xP|  linear polarized state given by the 

first layer (the xP|P polarizer) is shifted by the second layer (the half-wave plate) 

symmetrically with respect to its principal axis, i.e. into the state P| . 

From our present viewpoint it is a non-orthogonal device formed by two non-

commuting orthogonal devices. By means of (16) for 2/  and    and (15) for 

,0 its operator can be expanded in the   yx PP |,|  basis as follows: 


xPP ||2 )(

2/
PRP 


  

 yxxx PPiPPi   sincos   

                           xxyyxy PPPPiPPi   cossin   

                          ,sincos xyxx PPiPPi    (32) 

This improper expansion of the operator does not reveal directly its intimate 

structure. By noticing that  

||sin|cos  PPP yx    , (33) 

we obtain what can be called the eigenexpression of the operator: 

||2 xPP ~P  . (34) 

where ~ stands for „it is the same with”; the complex factor i has no relevance in 

defining the type of device. 

Now it is evident that this operator describes a non-orthogonal linear polarizer of 

azimuth   . Its eigenvectors and eigenvalues are: 

 PE || 1  ,    with      cos|1  PPx  , (35) 

 yPE || 2  ,    with    02   . (36) 
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It is worthy to note that, unlike the  -linear polarizer (20), the  -linear polarizer 

(34), (having the same eigenvectors but not the same principal eigenvalue) is not 

constituted by two orthogonal polarizers. While the operator (20) comes out from 

a series of two non-commuting orthogonal projectors, each of them corresponding 

to a POV and describing an observable, the operator (34) comes out from a 

Hermitian projector and a unitary, SU(2), operator. 

Let us form now the biorthonormal conjugates of the eigenvectors (35), (36) of 

the nonorthogonal linear polarizer 2P  (34). With (17) we get: 

0|| 121  yPFEF    →    xPaF || 1   

1|| 111  PFEF    →   1|*  PPa x  ,   cos/1a   

 xPF |
cos

1
| 1


 , (37) 

respectively: 

0|| 212  PFEF    →   
 0902 ||


PbF   

1|| 222  yPFEF    →   0

*

90
| 1yb P P


   ,   cos/1b   


 0902 |

cos

1
|


PF  (38) 

The eigenvectors of the two linear polarizers 1P , (20), and 2P , (34), are the same; 

only their major eigenvalues are different. Consequently their eigenprojectors are 

the same too: 

||
cos

1
|| 111 xPPFE  


T  , (39) 

                            ||
cos

1
|| 090222 




PPFE yT   (40) 

With (34), (35) and (39), the spectral theorem is verified. 

6. Two layer circular polarizer 

The common circular polarizers are made by laminating together a linear polarizer 

and a linear 2/  retarder, with the transmission direction of the polarizer at 
045 to the proper axes of the retarder. 

If the fast axis azimuth of the retarder is zero and the azimuth of the polarizer is 
045 , the operator of this sandwich is: 
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  
045

|| 2/ PPx
PRC   . (41) 

With (16) for 0 and 2/   and (15) for 045 one obtains: 

  xyyxyy

i

xx

i

PPPPPPePPe 











1
2

1
44



C   

    







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xy

i
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i
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i

xx

i

PPePPePPePPe 4444

2

1
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This, unexpressive, improper form of the operator can be readily led to its, 

expressive, eigenform:  

   yxy

i

yxx

i

PPPePPPe 


44

2

1

2

1


C   

                yxy

i

x

i

PPPePe 










24

2

1


  

                   ||
2

1

2

1
045

44 PLePPPiPe
i

yxyx

i





  . (42) 

This is a non-orthogonal left-circular polarizer. Its eigenvectors and eigenvalues are: 

 LE || 1     with    
2

1
|045

4
1  LPe

i


  (43) 


 0452 || PE     with    02   . (44) 

The biorthonormal conjugates of this pair of vectors can be determined by using 

(17), (13) and (14), as follows: 

0|| 045121 


PFEF    →    0451 || PaF   

1|| 111  LFEF    →   1|045

*  LPa  ,   4/2 iea    

 
045

4/

1 |2| PeF i
  , (45) 

0|| 212  LFEF    →    RbF || 2   

1|| 045222 


PFEF   →  0

*

45
| 1b R P


   ,  4/2 ieb  ,  

 ReF i |2| 4/

2

  (46) 
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The eigenprojectors of the non-orthogonal circular polarizer (42) are: 

||2|| 045

4
111 PLeFE

i





T  ,   (47) 

||2|| 045

4
222 RPeFE

i







T  . (48) 

Both are skew projectors (idempotent, non-Hermitian). They give a non-

orthogonal decomposition of the unity. 

Each of them projects any SOP vector on one of the eigenvectors of the polarizer 

along the other eigenvector: 1T  projects on  LE || 1  along 
 0452 || PE  , 

whereas 2T  projects on 
 045

| P  along L| . 

With (47), (43) and (42), we get: 

11TC   , (49) 

i. e., up to a constant factor, the non-orthogonal circular polarizer reduces to a 

skew-projector. Its essential physical action is, as those of an orthogonal polarizer, 

a projection, but in this case a non-orthogonal one. 

Conclusions 

In polarization optics two kinds of polarizers are encountered: the 

orthogonal and the non-orthogonal polarizers. 

The homogeneous canonical polarizers are orthogonal. The 

inhomogeneous (multilayer) polarizers may be orthogonal as well as non-

orthogonal [17]. 

The orthogonal polarizers are described by Hermitian operators; 

particularly, the ideal polarizers by one-dimensional orthogonal projectors. From 

the viewpoint of quantum theory of measurement these operators are standard 

(Dirac − von Neumann) observables and correspond to projection-valued 

measures.  

The non-orthogonal multilayer polarizers provide the simplest and clearest 

illustration of the class of operators describing the generalized observables. Their 

operators are not orthogonal projectors, and, moreover, they are not idempotent, 

i.e. they are not projectors. 

Nevertheless, the essence of their physical action is the same as that of the 

orthogonal (e. g. canonical) polarizers: roughly speaking, they project any 

incident SOP vector on their major eigenvectors. 
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The skew – axis (biorthonormal system) analysis of the non-orthogonal 

polarizers we have presented above is the best mathematical tool for pointing 

out the similarities as well as the differences between the orthogonal and non-

orthogonal polarizers.  

Concerning the differences between orthogonal and non-orthogonal 

polarizers, they are best illustrated by the simplest skew polarizer, analysed in 

section 4. It corresponds exactly to the scheme proposed by Davies and Lewis in 

their fundamental paper [6] on the generalized quantum measurement: the 

operator (20) is a generalized observable arising from two non-commuting 

standard observables. It is a positive operator-valued measure which is not 

projection-valued unless the two components commute (here they commute only 

in the trivial cases 2/,0   ). Unlike a standard measurement of P| (with a 

canonical P|
P  polarizer), the generalized measurement of P|  with the non-

Hermitian polarizer 1P , (20), is conditioned by the (preparative) measurement of 

xP| . Evidently, the „instrument” 1P  is the composition of P|
P  following 

xP|P , in the sense of theorem 2 [6]. The probability measure is that of the joint 

distribution [6] of P|
P  following xP|P . 

Finally we have to note that while the linear polarizer presented in 

section 4 corresponds exactly to the Davies-Lewis scheme, the linear polarizer 

and the circular polarizer presented in sections 5 and 6 do not correspond 

exactly to this scheme: their operators are not sequences of noncommuting 

standard observables (Hermitian, orthogonal projectors) but sequences of a 

Hermitian projector and a SU(2) operator; the last one does not correspond to an 

observable. Nevetheless the composite polarizers (34) and (42) correspond to 

observables. 

The most striking common feature of all the polarizers (orthogonal or 

non-orthogonal) is that they correspond to projectors, they come out of 

projectors, they are generated by projectors in the sense of the spectral theorem: 

the spectral structure of each polarizer is reduced to an (orthogonal or skew) 

projector ― the generator projector of the given polarizer. 

This structural unity between the operators of the orthogonal and non-

orthogonal polarizers comes to strenghten the Yuen’s assertion [21] that in fact 

„generalised observables should replace selfadjoint operators as the standard 

description of quantum measurements.” 
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