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Abstract 

This review provides an overview of characteristics on nano hydroxyapatite, 

HAP, with an emphasis on the improvement of its properties for biomedical 

applications, on the basis of our original research in the context of the state of the 

art. We consider the biological effects inspired by the role of HAP and 

physiological essential elements in the metabolism, development and regeneration 

of bone. The employment of multiple strategies to tackle the multi-substitution in 

the HAP lattice, resulting in multi-substituted hydroxyapatites, ms-HAPs, is likely 

to be accompanied by improvements of HAP properties as biomimetic 

hydroxyapatites for bone substitutes and dental cements for biomedical 

applications. The obtained nanostructured innovative biomaterials are briefly 

characterized by various physical and chemical methods. Due to the excellent 

capacity of HAP and ms-HAPs to adsorb various ions and biomolecules, like 

antimicrobial agents, they are major carriers for infection therapy.  Also, we 

demonstrated that HAP is very efficient for the heavy metal removal from 

wastewater, such as industrial and mine water. 

Keywords: hydroxyapatite, substituted hydroxyapatites, XRD, thermal treatment, 
morphological characterization. 

DOI https://doi.org/10.56082/annalsarscibio.2020.2.106

Introduction 

Natural bone is the only tissue that can regenerate without the formation of any 

scar tissue due to osteoclasts, osteoblasts and osteocytes, which are important in bone 

function. Osteoclast cells absorb old bone lining the medullary cavity and osteoblasts, 

by intramembranous ossification, produce young bone tissue under the periosteum. 
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This modeling process takes place during bone growth. Throughout life, the bone 

undergoes a remodeling process, in which the absorption of old or damaged bone 

tissue takes place at the same interface where osteoblasts produce new bone to 

replace the resorbed one. About 5-10% of bone mass is replaced annually, a high 

percentage of which is due to physical exertion, injuries, etc. With the inability to 

produce optimal bone mass, excessive bone resorption, or an inadequate response to 

increased resorption during the bone remodeling process, the skeleton acquires a 

fragility characteristic of osteoporosis [1]. This can be aided with the use of various 

materials, the majority based on calcium phosphates.  

Among these phosphates, synthetic hydroxyapatite (HAP, C10(CaPO4)6(OH)2) 

has been the subject of numerous studies due to its biocompatibility, bioactivity and 

chemical similarity to the inorganic phase in natural bone (around 60 to 70% 

hydroxyapatite) and its thermodynamic stability in body fluids [2, 3].  

Hydroxyapatite is increasingly used for biomedical applications, especially 

concerning the repair of bone defects, coatings on metallic implants, dental 

applications and drug delivery systems [4-22].  

Of course, all intrinsic properties of stoichiometric HAP can be improved upon 

by incorporating several divalent metal ions into its structure, such as silicon [23, 24], 

strontium [25, 26], zinc [27-29] and magnesium [30, 31].  

Thus, hydroxyapatite also gains the properties of the substitution ions, where Si 

is crucial in bone calcification and is known to stimulate osteoblasts [23, 24]; Sr 

reduces bone resorption and improves bone formation [9]; Mg plays an important role 

in skeletal development [30] and Zn has a prominent role in biological functions, 

having the ability to stimulate bone regeneration and increase bone density while 

reducing bone loss [27, 29, 32].  

Due to the high stability of the hydroxyapatite structure, a large part of 

literature focuses either on a single substitution [33-84] or on co-substitutions [85-

102]. Recently, triple and quadruple substitutions are also presented using various 

physiological essential elements [103-109].  

Considering all of the above, this review focuses on the improvement of 

hydroxyapatite properties due to its substitution with various elements resulting in 

biomimetic hydroxyapatite and its medical applications, with an emphasis on our 

research.  

Several types of hydroxyapatite were synthesized through a wet precipitation 

method by using a pilot equipment [24, 26, 29, 110], namely unsubstituted 

hydroxyapatite, HAP1; complex hydroxyapatite (triple-substituted with Mg, Zn and 

Si), HAP2; complex hydroxyapatite with 5 wt% Sr (tetra-substituted HAP), HAP3; 

and complex hydroxyapatite with 10 wt% Sr, HAP4; all compositions are shown in 

Table 1. 
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Table 1. Chemical compositions of hydroxyapatite samples, where HAP = 

HAP1; HAP-1.5%Mg-0.2%Si-0.2%Zn = HAP2; HAP-1.5%Mg-0.2%Si-0.2%Zn-

5%Sr = HAP3; HAP-1.5%Mg-0.2%Si-0.2%Zn-10%Sr = HAP4 

 

All synthesized hydroxyapatites were characterized both in their 

precipitated paste form and powdered form after sintering at different 

temperatures. This is of particular importance due to the different applications 

they might have.   

 

1. Hydroxyapatite pastes 
 

The hydroxyapatite paste is a suitable bone substitute in filling bone defects 

in dentistry and orthopedics, leading to a minimally invasive surgery. Also, HAP 

as paste can be added to toothpaste composition for a good remineralization of 

tooth enamel or be used in 3D printing to create ceramic scaffolds with 

predetermined characteristics [5, 111].  
 

   
                                 a                                                                       b 

Figure 1. Thermal curves (TG, DTG, and DTA) for 2 pastes: a) HAP1; b) HAP4, 

where TG is the thermogravimetric curve; DTG is the first derivative  

of TG curve; DTA is the differential thermal analysis curve 

 

For biomedical applications requiring hydroxyapatite pastes, their thermal 

stability and water content are crucial parameters. Therefore, the representative 

thermal behavior of two pastes HAP1 and HAP2, with different compositions 

given in Table 1, are presented in Figure 1 [112]. The pastes, that were previously 

Substitution element  (wt%) Theoretical formula 

Sample Mg Zn Si Sr  

HAP1 0 0 0 0 Ca10(PO4)6(OH)2 

HAP2 1.5 0.2 0.2 0 Ca9.36Mg0.61Zn0.03(PO4)5.93(SiO4)0.07(OH)1.93 

HAP3 1.5 0.2 0.2 5 Ca8.76Mg0.63Zn0.03Sr0.58(PO4)5.93(SiO4)0.07(OH)1.93 

HAP4 1.5 0.2 0.2 10 Ca8.12Mg0.65Zn0.03Sr1.2(PO4)5.93(SiO4)0.07(OH)1.93 
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stored in airtight containers, were analyzed through heating, up to 1000 oC in an 

air atmosphere. 

Figure 1 presents the thermal curves for stoichiometric hydroxyapatite (a) and 

multi-substituted hydroxyapatite pastes (b) for HAP-1.5%Mg-0.2%Si-0.2%Zn-10%Sr. 

The TG curve records the mass loss with the increase in sample temperature. DTA 

curve measures the temperature difference between the hydroxyapatite sample and the 

reference, while being subjected to an identical thermal treatment.  

The thermal behavior of both HAP and ms-HAP pastes is similar in the 

temperature range of 30-1000 oC. The difference between them comes in the form of 

mass loss, around 66% for stoichiometric HAP and 53% for the multi-substituted one. 

For both samples, the largest percentage of mass loss happens between 30 oC and 200 
oC temperature range and can be attributed to water loss due to its high content in 

pastes. The DTA data indicate an endothermic transformation for the two samples at 

around 160 °C. From 200 to 1000 oC, the mass loss is negligible, being around 1-2% 

for both samples. Above 200 °C up to 1000 °C the thermogravimetric curves became 

parallel to one another and with temperature axis.  

Further, Figure 2 presents the SEM images for both samples, namely 

stoichiometric and multi-substituted hydroxyapatite pastes. The morphology of 

the two pastes is somewhat similar, with agglomerated structures comprised of 

spherically-shaped particles. 

 

                         
                                            a                                                    b                                                                  
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Figure 2. SEM images and histograms for two pastes: stoichiometric HAP1 (a) 

and multi-substituted HAP4 (b).  
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The average diameters of nanoparticles are around 14 nm, for both pastes. 

However, the pastes have a slightly different particle arrangement. This can be 

explained through the different water content present in these pastes as well as 

their chemical compositions. All HAP and ms-HAP nanoparticles are fairly well 

defined but do have a tendency to form clusters.  

 

2. Hydroxyapatites powder 
 

Powder is probably the most used form of synthetic hydroxyapatite. 

Although like pastes, powders can also be added as a remineralization agent in 

toothpastes or even bone cements, the focus has been bone implantology. 

However, in order to create adequate implants or scaffolds of certain dimensions 

several factors have to be taken into account, the most crucial being the stability 

of the powder at higher temperatures that are required when forming ceramics.  

Figure 3 present the TG curves for hydroxyapatite powders both in their 

lyophilized form with lower crystallinity (a) and thermally treated at 300 oC, with 

a higher crystallinity (b).   
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                                  a                                                             b 

Figure 3. TG curves for lyophilized (HAPs) powders (a): HAP1 (1); HAP2 (2); 

HAP3 (3); HAP4 (4) and lyophilized (HAPs) powders, calcined at 300 oC for 1h 

(b): HAP1 (1c); HAP2 (2c); HAP3 (3c) and HAP4 (4c).  

 

The uncalcined powders all have a similar behavior up to 1000 oC, where 

three series of mass loss can be observed, namelly between 25-200  oC, 200-800 
oC and 800-1000 oC. This is in accordance with the behavior of the previously 

discused pastes with the same compositions. This can also be said for the 

thermally treated powders in Figure 3, the TG curves being even arranged in the 

same order as the untreated samples.  The only major difference here between the 

lyophilized HAP samples and the ones lyophilized and then subjected to a thermal 

treatment at 300 oC is the lower mass loss for the latter. This can of course be 
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attributed to the higher content of water in the lyophilized powders, water that is 

lost in the furnace for the thermally treated hydroxyapatites. Nevertheless, these 

HAPs are quite stable at 300 oC.  

   
                              a                                                               b 

Figure 4. XRD patterns HAP1 (a) and HAP4 (b) that were lyophilised and 

thermally treated at 300 oC for 1h; compared with standard PDF patterns 74-0566 

of stoichiometric HAP (red lines). 

 

The XRD patterns for stoechiometric HAP1 and multi-substituted HAP4 

samples that were lyophilized and thermally treated at 300 oC are given in Figure 

4. As it can be observed, for HAP1 all peak positions are in agreement with those 

for stoechiometric hydroxyapatite (standard PDF patterns 74-0566). This is also 

the case for HAP4 but with the presence of a slight lower angle shift in the 2θ 

positions. This can of course be explained by the Sr substitution into the 

hydroxyapatite lattice.  
 

     
                                 a                                                             b               

Figure 5. SEM images for stoichiometric HAP1 (a) and multi-substituted  

HAP4 (b) powders, lyophilised and calcined at 300 oC for 1h 

 

The morphology of particles was also studied in the case of HAP powders 

after calcination at 300 oC for a 1h, This is presented in Figure 5 for HAP1 (a) and 

HAP4 (b). A porous structure can be distinguished, with a slightly different 
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packing of particles for HAP1 as opposed to HAP4. This can be of course 

dependent upon the composition of the hydroxyapatite. 
 

3. Applications of hydroxyapatites 
 

Due to its properties, synthetic hydroxyapatite holds a large range of 

applicability either as a unique material or as part of composites. Although, the 

major focus in hydroxyapatite research has been related to bone substitutes and 

implants, in the following some other applications of HAP will be presented.   

 

3.1. Hydroxyapatites used as carriers for antibacterial agents 
 

Probably one of the most common further processing of hydroxyapatite is 

its sintering into a type of ceramic that could be further used as orthopedic 

implants. Taking into account that, although the risk is relatively low (approx. 

5%), orthopedic surgery infections do happen, and there is a need for a material or 

a composite that could tackle multiple issues at the same time. A more localized, 

postoperative administration of agents with antimicrobial properties would 

significantly reduce both the cost and duration of treatment. However, a 

prevention of such infections would be much more preferable.  

Taking this into account, in the following, some results concerning 

hydroxyapatite ceramic scaffolds under the form of disks, loaded with 

antimicrobial agents will be presented. Two types of stoichiometric HAP with 

different degrees of crystallinity (one calcined at 450 oC and another at 850 oC) 

were pressed into disks and then, further sintered into ceramics at a higher 

temperature (900oC). The prepared ceramics were characterized in terms of 

porosity (using the Archimedes method).  

Here, porosity is an important parameter when it comes to further loading 

the ceramics with active substances, as it increases the specific surface allowing 

solutions to penetrate inside the ceramic and not just linger on the surface. Table 2 

presents the apparent porosity for the ceramic disks obtained from the 2 

hydroxyapatite powders, HAP1-450 and HAP1-850. It can be observed that in 

these cases the porosity is quite high. 

All ceramics were then loaded with silver ions (by means of AgNO3) and 

nitroxoline (5-nitro-8-hidroxichinoline). While silver ions are already known to 

have an antibacterial property, nitroxoline was fully chosen for its capacity to 

combat biofilm infections. The loaded ceramic samples were tested for their 

antimicrobial activity using a Staphylococcus aureus strain, one of the most 

prevalent causes of orthopedic infections.  
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Table 2. Apparent porosity of HAP1-450 and HAP1-850 ceramic disks. 

Hydroxyapatite was calcined at 450 oC (HAP1) and 850 oC (HAP2) 
 

Ceramic disk Sample Apparent porosity 

Pa (%) 

 

HAP1-450 

1 47.67 

2 47.01 

3 54.73 

 

HAP1-850 

 

1 46.39 

2 48.12 

3 44.56 

 

Figure 6 shows the inhibition areas after 24 hours for both the loaded disks 

and for the solutions in which the disks were submersed in, AgNO3, nitroxoline 

(NHQ) or a combination of both.  
 

 
Figure 6.  Inhibition areas for Staphylococcus aureus in presence of ceramic disks 

loaded with antimicrobial solutions (a), or in presence of antimicrobial solutions 

in wells (b). Samples are numbered as follows: 1 for HAP1/water and 6: 

HAP2/water, each as control; 2 and 3: HAP1/AgNO3; 7: HAP2 /AgNO3; 4: 

HAP1/NHQ; 8: HAP2/NHQ; 5: HAP2/NHQ + AgNO3; 9: HAP1/NHQ + AgNO3.  
 

Table 3 better presents the exact inhibition area in mm. The control samples 

of HAPs in water (1 and 6) do not produce any antibacterial effect as opposed to 
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the samples loaded with nitroxoline (4 and 8) which produce the highest one. This 

is comparable to the results related to the individual solutions (Figure 6b). 

Samples 2, 3 and 7, namely HAPs loaded with just silver ions produce a smaller 

inhibition area when compared to their counterpart solutions. This can be 

explained by the interaction of Ag+ with the ceramic disk, leading to a slow 

release of the silver ions. 

 

Table 3. Inhibition areas for the samples presented in Figure 6. 

Labels are the same as in Figure 6. 
 

Sample Inhibition areas (mm) 

1 2 3 4 5 6 7 8 9 

Disks  - 15 15 >30 14 - 17 >30 18 

Solutions - 18 18 >30 17 - 18 >30 18 

 

Conversely, samples 5 and 9 corresponding to the ceramic disks loaded with 

both nitroxoline and silver ions lead to inhibition areas smaller than that of those 

loaded with nitroxoline (3 and 8). However, a comparative result is shown 

between samples 5 and 9 and those with just the silver ion solution. This can be 

explained by the fact that the silver ion solution was the last one the ceramic disks 

were in contact with.  

This study is important as it offers a different approach to administrate 

antimicrobial agents against orthopedic infections. By loading these agents even 

in low concentrations on the implant at the surgery would prevent a potential 

infection.  

 

3.2. Dental cements 
 

Hydroxyapatite has been the objective of many studies regarding dentistry. 

Its ability to promote osteoconduction, bonding with teeth and forming a hermetic 

seal, make it an ideal material for endodontic purposes. Its bioactivity is quite 

close to the crystalline and amorphous phases present in the structure of enamel 

thus, many studies have analysed its addition to certain fillers [113]. Also, 

Portland cement has long since been employed as a dental material due to its 

ability to set at a physiological temperature combined with its low cost. Previous 

studies have proven this cement to be biocompatible [114-117] and its main 

component, tricalcium silicate to be able to induce cell proliferation and 

hydroxyapatite build-up [118].  

Considering that commercial endodontic cements have quite a wide range of 

setting times, anywhere from a few minutes (2-3 minutes for EndoChe Zr) to a 

few hours (4h for Trioxident) or even days and weeks (3+ weeks for Roth 801, 
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Elite) [119-122] there is a need to obtain a material that offers an adequate amount 

of work time for dentists but does harden in fast enough for patients. 

With this in mind, in the following, some results regarding Portland cement 

enriched with hydroxyapatite will be presented. Two types of nano hydroxyapatite 

powder were used, a stoichiometric HAP and a Zn-substituted HAP, both 

synthesized through a wet precipitation method. Their compositions are presented 

in Table 4.  
 

Table 4. Composition in stoichiometric HAP and Zn substituted HAP (HAP-Zn)  
 

Nanomaterial Zn (wt%) Theoretic formula 

HAP  0 Ca10(PO4)6(OH)2 

HAP-Zn 5.0 Ca9.217Zn0.783(PO4)6(OH)2 

 

Each nanomaterial was mixed together with Portland cement following the 

compositions in Table 5. Sample S0 acts as the control sample and is formed only 

of Portland cement. The setting time was studied for all samples using a simple 

Vicat apparatus and a constant consistency water of 87 ml. The experiments were 

performed at 2 temperatures, namely at room temperature (22 oC) and at a 

temperature that mimics that of the human body (37 oC). 

 

Table 5. Experimental compositions of endodontic cement 

 
             Material 

 

 

Sample 

HAP [wt %] HAP-Zn [wt %] Portand cement 

[wt %] 

S0 - - 100 

S1 3 - 97 

S2 - 3 97 

S3 5 - 95 

 

As it can be observed from Table 6 the setting time at room temperature for 

both endodontic samples containing 3wt% nanomaterial, namely  stoichiometric 

HAP for S1 and Zn-substituted HAP for S2, decreases significantly when 

compared to the standard S0. In addition, a reduction to almost half of the initial 

Portland cement setting time can be observed for sample S3 containing 5 wt% 

stoichiometric HAP.  



 

 

Alexandra AVRAM, Gheorghe TOMOAIA, Aurora MOCANU, Maria TOMOAIA-COTISEL 

116  Academy of Romanian Scientists Annals - Series on Biological Sciences, Vol. 9, No.2, (2020) 

At 37 oC a similar behavior for all samples is encountered. Firstly, the 

setting time for S0 decreases by 15 minutes. Then, the same pattern as above can 

be applied with the lowest setting time, almost half of the standard, being 

observed for sample S3. This of course can be explained by the higher 

hydroxyapatite content when compared to samples S1 and S2.  

 

Table 6.  Setting time for Portland cement and experimental endodontic samples 
 

Sample Consistency 

water (ml) 

Setting time (min) 

22 °C  37 °C 

S0  87  85 70 

S1 
87 

55 45 

S2 
87 

55 45 

S3 
87 

45 35 

 

While studies regarding the incorporation of hydroxyapatite into Portland 

cement with endodontic purposes can be improved upon, the presented work does 

show that HAP can be an important component of such mixtures, having the 

ability to lower the setting time. For dentistry, Zn substituted hydroxyapatite is 

specifically noteworthy when it comes to the property of Zn ions to exhibit 

antimicrobial effects against several bacterial and fungi strains.  

 

3.3. Hydroxyapatite used for removal of toxic elements 

 

Hydroxyapatite can be used in a variety of ways that are not related to 

implants or the medical field. Several studies report on HAP having an efficient 

heavy metal removing capacity from aqueous solutions [123-125]. However, 

while this is true, this property can depend quite heavily on the nature of heavy 

metal ions, their charge, concentration in which they are present, diameter, and of 

course on the properties of the water itself as in pH values or temperature [123, 

126]. 

In the following some results concerning the removal of highly toxic heavy 

metals from wastewaters will be presented. This study holds a special importance 

as the wastewater was collected from Roșia Montană, a heavily polluted area. As 

it can be seen from Table 7, the initial concentration of some heavy metals (Al, 

Fe, Mn, Zn) way surpasses the limit values imposed by law for discarded 

wastewater. All adsorption experiments were carried out employing a 
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HAP/wastewater ratio of 10g/100ml. After 100 minutes, all concentrations of 

heavy metals were drastically reduced way under the imposed limit.  

 

Table 7. Metal removal from mine wastewaters using nano HAP powder; results 

are given as mean ± confidence interval for n = 3 and 95% confidence level 
 

Metal Initial 

concentration 

c
0
, mg/L 

Final 

concentration 

c
e
, mg/L 

Removal 

degree, % [a]
   

Limit values for 

wastewater, mg/L 

Al 

Fe 

Mn 

Zn 

313 ± 37 

92 ± 9 

190 ± 5 

14.4 ± 0.9 

1.9 ± 0.6 

0.9 ± 0.6 

0.81 ± 0.48 

0.18 ± 0.08 

99 ± 12 

99 ± 10 

100 ± 3 

99 ± 6 

5      (STAS 9411-83) 

5      (SR ISO 6332-96) 

1      (SR ISO 6333-96 ) 

0.5   (SR ISO 8288:2001 ) 

 [a] the removal degree and its confidence interval were calculated by a concentration 

difference and pooled standard deviation 

 

Overall, these experiments show that hydroxyapatite can be successfully 

used to treat heavily contaminated water for a significantly low cost. This is 

important as water is a crucial parameter in a sustainable development. However, 

also due to this development (manufacturing industries, mining, paper production 

plants, leather tanning, explosives, fertilizers, just to name a few) large bodies of 

water are contaminated with heavy metals. Easily able to enter the human body 

following the food chain [123, 127] these heavy metals lead to a large variety of 

health concerns with some being potentially deadly [123, 128, 129].  

 

4. In vitro generation of hydroxyapatite by forsterite scaffolds 
 

As it has been stated in the above material, synthetic nano hydroxyapatite 

closely mimics the inorganic phase of the human bone, thus making it the ideal 

material in orthopedics. Although, synthetic HAP has been used for orthopedic 

implants for some time, the viability of an implant is dependent on the various 

processes that take place at its interface with human bone.  

This need for sustainable and rapid bone integration has led to attempts to 

approximate its composition with biomimetic hydroxyapatite. This can be 

achieved by using porous forsterite (Mg2SiO4) ceramics due to their ability to 

trigger the production of new bone by the human body. The bioactive property of 

forsterite highly depends on the ions in its composition, both essential minerals 

that have been proven to help the young bone remineralization and the gain of 

bone mass [130-136]. 
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Figure 7. SEM image (a) and EDS spectrum (b) for forsterite ceramic, FC-1400, 

sintered at 1400 ºC, after 3 months of immersion in simulated body fluid, SBF 
 

Figure 7 presents a SEM image (a) coupled with EDS spectrum (b) for 

forsterite ceramic (e.g., sol-gel derived forsterite) powder sintered at 1400 oC. The 

FC-1400 was immersed in SBF for 3 months. As it can be observed from Figure 

7, after the immersion period a spot with different morphology appears on the 

surface of the forsterite ceramic, confirmed by the EDS analysis to be 

hydroxyapatite. These results recommend Mg2SiO4 as a good alternative to 

hydroxyapatite for bone implants. This could be especially important in the case 

of metallic implants where forsterite would be used as a coating. Here, by 

facilitating HAP formation on its surface, it would lead to a better 

osseointegration process, leading the body into easily accepting the metallic 

implant. 

 

5. Nanoscale interactions 
 

Hydroxyapatite has been proven to be biocompatible being even used 

clinically and in various commercial products. However, the fact that it is 

synthesized in nano form still raises some questions in regards to its potential side 

effects related to the interaction of nanoparticles with the living cell. The 

detrimental effects of nanomaterials on the living cell have gained a lot of 

attention especially concerning their application in medical fields.  

However, the nanoscale interactions are part of a less researched area of 

nanoscience in spite of countless nanoparticles being studied for targeted drug 

delivery and the necessity of certain drugs to cross the blood-brain barrier [137-

141] or penetrate cell membranes to approach the nucleus [142-148]. Considering 

that the cell membrane is a phospholipid bilayer barrier [149-151] it is very 

important to understand the interaction of nanoparticles with various self-

assemblies of organic molecules such as monolayers [152-200], bilayers [201-

203] or Langmuir-Blodgett layers [204-209], which are frequently used as models 

of biological membranes.   
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Crossing the cell membrane can be done by endocytosis when the 

nanoparticle is encapsulated in vesicles or by passive penetration through the 

membrane. Nevertheless the interaction of nanoparticles with a cell membrane is 

dependent on the physicochemical properties of said nanoparticles. These relate to 

type, shape, size, composition, crystalline structure, and surface characteristics 

(charge, type of targeting functional groups, coatings) of nanoparticles [210]. 

However, the cell type and the chemical composition of cell membrane 

jointly with cell cycle leading for example to cell division [211] are also important 

[212]. With so many variables to be taken into account, studies on the interaction 

of nanoparticles, even biocompatible ones like hydroxyapatite, with the human 

cells are of crucial importance in developing a better understanding at the 

nanoscale interactions. The future research will help to gain knowledge on the 

interaction of nanoparticles with various models of biological membrane and   

healthy cells, and also with cancer cells, exploring nanoparticles used for targeted 

drug delivery [213-222] to better design innovative nanomaterials for biomedical 

applications.  

 

Conclusions 

 

Hydroxyapatite has a multitude of applications. This review focuses on 

research regarding some biomedical applications of nano HAP and biomimetic 

(multi-substituted) HAPs. While most materials present on the market are based 

on stoichiometric hydroxyapatite much effort has been employed towards 

improving its innate properties.  

Thus, many studies focus on ionic substitutions in the HAP network using 

physiological essential elements. Some of these elements are of particular 

importance as they play an important role in the development and regeneration of 

bone tissue. Consequently, single or multi-substitutions into the hydroxyapatite 

lattice would allow HAP to not only keep its innate biocompatible properties but 

also inherit those of all substituting ions, which will be eventually sustained 

release in vivo. Various applications of hydroxyapatite and biomimetic HAPs 

have also been discussed as bone substitute and coatings on metallic implants for 

osseointegration and enhanced fracture healing.  

Due to its high adsorptive capacity for various molecules or ions coupled 

with its biocompatibility make hydroxyapatite and ms-HAPs ideal vehicles for 

targeted drug delivery. The specific example of HAP loaded with nitroxoline and 

silver ions was discussed in this review and has potential applications in infection 

therapy.  

Also, this adsorptive property of hydroxyapatite turns it into a good 

candidate for heavy metal removal from wastewaters. Of course, the example 

provided on Roșia Montană mine wastewater might bring the same principle that 
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can be applied in the medical field when dealing with the ingestion of toxic 

substances and detoxification by using nanomaterials. Definitely, in vivo research 

is still needed to develop innovative nanomaterials for clinical applications.   
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