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Abstract 

Astrocytes are highly specialized glial cells and play a crucial role in neuronal 

functionality and brain functional integrity. Although research on Alzheimer’s 

disease has been concentrated mainly on the role of neurons, increasing evidence 

comes to light marking the important role of astrocytes in the pathophysiology of 

Alzheimer’s disease. Astrocytes undergo certain morphological changes in 

Alzheimer’s disease and they are thought to participate in Ab metabolism, and to 

mediate neurotoxicity and neuronal death through Calcium signaling. 

Here we briefly present the morphological changes of astrocytes and their role in 

Alzheimer’s disease neurodegeneration. 
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Introduction 

Astrocytes are highly specialized and of heterogeneous morphological 

appearance glial cells that play a crucial role in the neuronal functionality and 

overall integrity of brain function. They can be distinguished based on their 

morphology and biochemical characteristics to protoplasmic ones which are 

located in the cerebral and spinal gray matter, and usually have 5-10 primary 

processes with extremely elaborate branches, to fibrous astrocytes, which are 

located in the white matter, and have long processes that parallel to neuronal 

axons, to radial glia, which are commonly seen in the developing brain and have 

an ovoid body with to antidiametric elongated processes, and after brain 

maturation are found only in the retina and the cerebellum, to velate astrocytes 

which are protoplasmatic astrocytes, located in the cerebellar molecular layer, to 

astrocytic neural stem cells which are found in the subventricular zone of the 

lateral ventricle and  to pituicytes of the neurohypophysis [1]. 
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For more than 100 years neurological research has focused mainly on neurons, 
ignoring other types of cells of the central nervous system, however recent studies 

have shown that glial cells and more specifically astrocytes are of extremely high 

importance for the normal function of neurons and the central nervous system, and 

might have significant roles in the pathogenesis of many neurological diseases and 

conditions, while they offer structural support, participate in the modulation of the 

neuronal activity and neuronal metabolism, they play a role in the maintenance of 

the extracellular environment and the regulation of cerebral blood flow, they are an 

integral part of the defense against oxidative stress and can act as pluripotent 

neural precursors for adult neurogenesis [2, 3]. 

Increasing evidence is stressing the emerging role of astrocyte dysfunction 

in the pathophysiology of neurological disorders, including epilepsy, migraine 

and Alzheimer’s disease [4, 5]. 

In the present study, we aim to review the role of astrocytes in the 

metabolism and clearance of Ab peptide and their role in Ab-induced 

neurotoxicity in Alzheimer’s disease. 

Connectivity and synaptic activity - Role of astrocytes in synaptic 

regulation 

Astrocytes can exhibit evoked inward currents, and although they do not 

propagate action potentials along their processes, they seem to play an important 

role in the modulation of neuronal synaptic activity [4]. Astrocytes can couple to 

neighboring cells (other astrocytes, oligodendrocytes and rarely neurons) 

through gap junctions, formed by connexins, providing a powerful 

communication network, permeable to both small ions and some larger 

macromolecules. Furthermore, they express potassium and sodium channels and 

exhibit regulated increases in intracellular calcium concentration [4,6].  The 

increase of the intracellular calcium concentration can occur as intrinsic 

oscillation resulting from calcium released from intracellular stores, can be 

triggered by transmitter such as glutamate and purines, can elicit the release of 

transmitter into extracellular space including glutamate, ATP, and D-serine, that 

bind to pre- and/or postsynaptic neuronal receptors to modulate synaptic 

transmission and activity, and can be propagated to neighboring astrocytes [7 - 

10]. 

The integrity in the cooperation between neurons and glial cells is of 

crucial importance for the maintenance of cognitive functions (11, 12). 

Astrocytes in particular release gliotransmitters which control synaptic plasticity 

in different brain structures (13, 14, 15), and are involved in memory and 

learning processes. The dysregulation of this relationship may result in different 

neurodegenerative disorders and psychiatric conditions (16 - 19). 
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Reactive astrogliosis in AD 

Astrogliosis is common in all kinds of CNS injury, however, increased 

astrocyte reactivity is a telltale sign of chronic neurodegenerative diseases like 

Ad and PD [20 - 22]. Recent evidence identifies two different types of astrocytes 

with specific roles in neurodegeneration, A1 and A2 astrocytes. Although type 

A2 astrocytes play a more general role in advance healing of ischemic injuries, 

reactive A1 astrocytes may be involved in detrimental activities [23]. 

Reactive astrogliosis is one of the archetypical morphological features in 

Alzheimer’s disease brains, manifested by cellular hypertrophy and an increase 

in the expression of GFAP and astroglial S100B protein [24 – 30].    Post-

mortem analysis of Alzheimer’s disease brains has also demonstrated a positive 

correlation between the degree of astrogliosis and cognitive decline, but not with 

senile plaque pathology [31].  The same study describes a link between reactive 

astrocytes and a number, but not all the Amyloid plaques, whilst astrogliosis was 

present even without Amyloid depositions in both AD and non-AD brains. The 

question that arises then is whether astrogliosis can just accompany normal brain 

aging, however, experimental evidence in rat retina showed that aging was 

associated with a decrease in the total number of astrocytes, with an increase in 

the proportion of cells with gliotic morphology [32, 33]. Conversely, other 

studies have reported a significant increase in the number of astrocytes in the 

hippocampus of aging mice and in the frontal cortex of male rats, accompanied 

by hypertrophic remodeling in the cortex [34]. Further studies revealed an 

increase in the number of astrocytes in the parietal cortex and the dentate gyrus 

of old Wistar rats [35, 36], and no significant changes in the astrocytic number 

were found in the primary visual cortex of old rhesus monkeys [37]. Another 

study found a significant increase in GFAP expression and astroglial 

hypertrophy in the white matter of the brains of aged monkeys [38], and studies 

in the human neocortex did not reveal significant changes in the number of 

astrocytes with age [39]. Although the link between normal aging and 

astrogliosis remains controversial, it widely accepted at the moment that an 

increase in the number and an overall astrocytic hypertrophy are features of 

normal brain aging [40]. 

 

Morphological changes of astrocytes driven by Ab 

Exposure to Ab triggers certain morphological changes of astrocytes in 

primary mixed neuronal-astrocytic cultures characterized by convoluted 

processes and terminal swelling [41]. The activation of astrocytes in response to 

Ab is closely associated with Ab-induced neuronal death, and as Garwood et al 

have shown, Ab-induced neuronal death is mediated by a soluble factor secreted 

by astrocytes [41]. Furthermore, astrocytes increase Ab-induced caspase-3 

activity in primary mixed cultures, which in turn is closely linked to neuronal 
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death. Another important even in AD pathophysiology is the phosphorylation of 

tau protein, induced by Ab peptide [42]. Experimental evidence has shown that 

astrocytes are necessary for Ab-induced phosphorylation [41]. Ab treatment of 

mixed neuronal-astrocytic cultures had a significant effect on the release of 

inflammatory cytokines including cytokine-induced neutrophil chemoattractant, 

interferon gamma, interleukin 1b, 1ra, 6, 13, 17, IP-10. Some of these 

inflammatory mediators are related to neurotoxicity and are known to trigger 

caspase activation through death effector domains [42]. 

The activated astrocytes are intimately involved in the neuroinflammatory 

component of the AD through the release of cytokines, pro-inflammatory 

factors, and nitric oxide/reactive oxygen species neurotoxicity [43]. 

These aspects can also be seen in Figure 1. 

 

 
Figure 1. Schematic representation of the role of astrocytes  

in Alzheimer's disease. 

 

Astrocytes and Ab clearance 

Another controversial matter is the role of astroglial cells in processing 

and metabolism of Ab peptide. It has been suggested that reactive astrocytes in 

Alzheimer’s disease participate in the clearance and degradation of amyloid [44, 

45]. Activated astrocytes close to Ab plaques in the brains of transgenic APP 

mice express the amyloid-degrading enzyme, neprilysin [46], while in the 

entorhinal cortex of AD patients has been found accumulation of Ab peptide in 

astrocytes [47]. Further studies have demonstrated the ability of astrocytes of 
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phagocyte and degrade b-amyloid deposits in vitro, but this can only be done by 

astrocytes isolated from healthy brains and not from the APP transgenic mice 

[48]. Astrocytes produce the majority of apoE in the CNS, and previous 

evidence suggests that they are one of the main cell types in the brain that play a 

central role in the cellular clearance of Aβ [49-51]. Verghese et al (2013) 

presenteed evidence that do not support the existence of significant direct 

interactions of apoE isoforms with sAβ in CNS fluids, and they suggested that 

the ability of apoE to influence Ab clearance or aggregation is mediated through 

its actions with LRP1 and other interacting receptors/transporters, marking the 

crucial role of astrocytes and other cells types in Ab clearance [52].  

Furthermore, activated astrocytes surrounding Ab plaques were detected to 

express the endoprotease known as b-site APP-cleaving enzyme 1 (BACE-1), an 

enzyme required for the production of Ab, and in healthy brains is found only in 

neurons [44]. Moreover, many brain insults that trigger astrogliosis, have been 

also found to trigger the astrocytic expression of BACE-1 [53]. 

Astrocytes take up Ab through lipoprotein receptor-related protein 1 in the 

presence of amyhloid-associated protein ApoE [54, 55]. Leucine-rich glioma 

inactivated protein 3, which co-localizes with Ab at the astrocytic cell 

membrane plays an important role in the internalization of Ab by astrocytes 

[56]. 

Formyl peptide receptors, a group of seven-transmembrane G protein-

coupled receptors [57], which are expressed in neurons, astrocytes and microglia 

[54, 55], binds to Ab(1-42) and activates internalization of the complex Ab-

FPRL 1 in microglia and astrocytes [60-64]. 

Toll-like receptors which are involved in the microglial clearance of 

monomeric, oligomeric and fibrillar Ab by microglia [63, 64], are also expressed 

in astrocytes [65 – 67]. 

Ab is rapidly trafficked to lysosomes after uptake and exogenous [68, 69], 

and degradation of Ab requires intact astrocytic lysosome function which is 

essential to prevent neurodegeneration [70]. Aging-induced impairment in 

lysosome function is thought to facilitates pathogenesis in AD [71], and 

enhancement of lysosomal biogenesis in astrocytes is highly efficacious in 

facilitating Ab and amyloid plaque elimination by them [72]. There is 

compelling evidence that Aβ pathology is closely associated with inflammation 

and reactive astrocytes and microglia are situated tightly around the plaques 

[73]. The formation of a glial capsule around the Aβ deposits may protect the 

surrounding brain tissue from toxic Aβ species, but the astrocytes and microglia 

have also been shown to secrete cytokines and neurotoxic products that could 

induce neuronal degeneration [74]. Astrocytes effectively engulf dead cells, 

synapses and protein aggregates of Aβ and α-synuclein 75-81]. Interestingly, 

astrocytes have been shown to be more efficient than microglia in taking up Aβ, 
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particularly during the early stages of AD [82]. The fact that reactive astrocytes 

with high Aβ load are frequently found in the AD brain further confirms the 

importance of astrocytes in Aβ clearance [83]. Sollvander et al (2016) 

demonstrated that astrocytes engulf large amounts of protofibrillar Aβ42 which 

results in severe astrocytic endosome/lysosome defects and microvesicle-

induced neurotoxicity. They concluded that accumulation of Aβ in astrocytes 

could play a vital role in the sporadic form of Alzheimer’s disease [84]. 

 

Calcium signaling and Ab toxicity  

Profound vascular pathology is another factor in AD physiopathology [68, 

69 - 72, 85]. The neurovascular unit, which is the elementary component of 

microcirculation in the brain, integrate neurons, endothelium, pericytes and 

vascular smooth muscle [70, 71], with the role of astrocytes being the 

coordination of elements that establish the link between neuronal activity and 

blood flow [91, 92]. The astrocytic end-feet regulate the formation of tight 

junctions, controlling the transport of water and electrolytes, and providing 

neurons with energy substrates [88, 90]. CASR gene, a member of family C of 

the G-protein-coupled receptors which exhibits topological and sequence 

homology to the metabotropic glutamate receptors [93] and plays a role in the 

intracellular calcium concentration [94] form complexes with soluble or fibrillar 

Abs [91, 92]. CASR is expressing in every CNS cell type, including the 

astrocytes [92, 93] and seems to play a role in dendritic and axonal growth [93]. 

Oversecretion from the astrocytes’ end-feet of an Ab.CaSR-mediated Vascular 

Endothelial Growth Factor -A, the surpluses of which are toxic to neurons, 

astrocytes and endothelial cells, resulting in blood-brain barrier functional 

impairment [94-97], has been noticed in the hippocampus of MCI stage patients 

[898]. Toxic Ab plaques seem to target the neurovascular units, affecting the 

microcirculation and vascular Ab clearance [57]. Furthermore, overproduction 

and release of VEGF-A is an atypical feature of AD. Ab.CaSR-induced 

signaling mechanism stimulates the secretion of neurotoxic Ab42/Ab42-os from 

human cortical postnatal neurons [92] and it is believed that plays a crucial role 

in the development of a vicious cycle of spreading Ab toxic elements within the 

brain [92, 99].  Amyloid beta enhances calcium signaling in astrocytes [58] and 

interacts with a number of surface receptors which leads to increase of 

intracellular calcium and disrupts gliotransmission  [100, 101] with detrimental 

effects on neuronal homeostasis, synaptic transmission, and plasticity.  
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Discussions 

For more than a century, the vast majority of research projects on the 

pathophysiology of Alzheimer’s disease have been mainly focused on neurons, 

however increasing evidence comes to light showing the crucial role of 

astrocytes in cellular pathology, and Ab toxicity. Recent experimental evidence 

has shown that astrocytes undergo certain morphological changes when treated 

with Ab peptide, and they release soluble agents that mediate caspase-induced 

neuronal death [67-71, 85-87]. Furthermore, astrocytes are necessary for the Ab-

induced tau phosphorylation, a critical event in AD pathophysiology [110]. 

Atrophy of astroglia which occurs at the early stages of AD is likely to 

accompany synaptic malfunction, synaptic loss, and cognitive deficits. Synaptic 

pathology is one of the early signs of brain pathology in AD and happens even 

before, or with poor correlation to Ab load and tangles expression, however, it is 

linked to cognitive decline [100 – 105]. Astrocytes, the fundamental elements of 

synaptogenesis and synaptic maintenance, control the composition of the extra-

synaptic environment, preventing local glutamate toxicity and oxidative damage. 

In AD brains, astrocytes which are not in close proximity to senile plaques are 

atrophic, and therefore it is now accepted that they may a role in synaptic 

pathology. 

Further studies are expected to be carried out in the near future on the role 

of astrocytes in AD and will definitely fill the gap in the knowledge of the 

precise etiological aspects of this disease which difficult the advance of 

therapeutics. Astrocytes are valuable novel therapeutic and neuroprotective 

targets for future treatments and mechanistic comprehension of AD. 
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