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Abstract 

Recently gut microbiome, genetics, and epigenetics have been incresingly cited for 

being involved in aging and longevity. In addition, the oxidative stress status also has a 

significant role in the context of aging and longevity, where also lipofuscin take place 

and become a hallmark of aging. Thus,  in this mini-review we highlighted the role of 

the gut microbiome in aging and longevity,  and its relationship with antioxidants in the 

prevention of age-related diseases. We also discussed the possible mechanistical aspect 

for the interactions between lipofuscin, oxidative stress, and aging, and we reveal 

additionally a new theory of aging based on the complex interactions among genetics, 

microbiome, environment, aging and  longevity. 
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Introduction 

Lipofuscin a lipid peroxidation final product [1], called also the “aging 

pigment”  is a yellow-brown pigment under the conventional microscopy, it 

is practically increasing in aged individuals than in young ones [2] it was 

demonstrated that lipofuscin is a hallmark of aging, and it is inversely correlated 

with longevity usually it accumulates in postmitotic cells [3] like neurons, 

cardiac myocytes and skeletal muscle fibers as reviewed in [4]. Lipofuscin 

accumulations are well- known as a strong marker of aging [4] and it is a 

time-dependent phenomenon, it results from various genetic and environmental 

conditions [5], Lipofuscin is highly oxidized cross-linked protein (30-58%) and 

lipid (19-51%) clusters. researches described the formation of lipofuscin in the 

cytosol, that was caused by oxidative stress .also mitochondria play an important 

role in lipofuscin formation where the mitochondria the place for intracellular  
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energy source also susceptible to oxidation stress [6] it was hypothesized that, 
lipofuscin is formed within secondary lysosomes, as result of interaction between 

two process, the production of partially reactive oxygen species by mitochondria 

and the autophagocytotic degradation within secondary lysosomes, which 

described as follows, the ferrous reactive ion and H2O2 interact together and form 

hydroxyl free radicals (OH), inducing lipid peroxidation which lead to 

intermolecular cross-linking and formation of lipofuscin [7]. Chemically the 

composition of lipofuscin has been studied, the obtained results indicate that 

lipofuscin are composed of 30-70% proteins “ (glycine, valine, alanine and 

proline, several hydrolytic enzymes), 20-50% lipids ( Cholesterol, 

phospholipids, triglycerides, free fatty acids, bis (monoacylglycero) 

phosphate, ubiquinone, dolichol and phos-phorylated dolichol, 4-7% 

carbohydrates (mannose, N-acetylglucosamine, glycine, glucose and 

galactose ) and  metals in trace amounts ( Iron, copper aluminum, zinc)” [8], 

[9]  lipofuscin  characterized by autofluorescence  under fluorescence 

microscope “Ex: ~440; Em: ~600 nm” [10]  lipofuscin is usually found in 

nerve skin and cardiac cells due to nature of lipofuscin as it accumulated in 

the lysosomes and cell cytoplasm of long-lived post-mitotic and senescent 

animal cells on the other hand, other cells which can be proliferate show a 

low abundant  in this pigment as it may dilute it like in glia cells there are 

also lipofuscin but it should be in less amount than neurons as glia cells are 

subjected to division, but high concentration of lipofuscin is suggested to be 

due to from the transfer of neuronal lipofuscin to glia cells, Labile cells like 

bone marrow have the ability to dilute accumulated lipofuscin, but 

postmitotic cells such as neurons are not able to do so. mainly lipofuscin 

found in neurons, skeletal muscle cells and retina but retina has special 

interest concerning lipofuscin distribution because lipofuscin found in the 

retina is different from that of other body tissues [11], [12] also lipofuscin 

can alter cellular proteostasis  which also called (protein homeostasis) is a 

mechanism  which control synthesis, folding, trafficking, translation and 

degradation of proteins also it considers to be a major factor in neuronal 

activity, in the aging  of this mechanism  become less effective, which surely 

can be  lead to diseases such as Parkinson’s disease [13], Huntington disease 

( due to lipofuscin accumulation as it observed in the brain of patients  ) [14], 

[15]  and other aging diseases like Alzheimer's disease  [16]  There are some 

of the studies suggesting that cytotoxicity occurs  as the end product of 

process starting with an accumulation of lipofuscin that causes inhibition of 

proteasome which functions to degrade unneeded or damaged proteins like 

oxidized proteins which finally leading in increasing free radicals as 

reviewed in [12], [17] 

Oxidative stress is the condition that happens due to imbalance between 

reactive oxygen species (ROS) and antioxidants  [18]  there are a variety of 
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studies suggest that lipofuscin accumulation is due to oxidative stress as 

reviewed in [19], [20]  but it is not only oxidative stress it also because of the 

inability of removing oxidatively damaged structure take into account  that the 

mitochondria are the main source of oxidative stress  [21]  Oxygen itself has 

an important role in the cell, as cell respiration which is an essential process 

for the cell [22]  however the excess oxygen can cause unbalance in cell 

function[23], given the fact that oxidative stress enters in many impairments 

in the cells especially the brain ones [24], lipofuscin increases this risk of 

oxidative stress [3]. Moreover, lipofuscin can produce oxidants in senescent 

cells  however the amount is moderate [25] oxidative stress has been linked 

with a variety of disease including age-related disease  even the age-related 

development of cancer [26], [27]  

Denham Harman was first one who proposed association between 

aging and the degenerative diseases under the free radical theory of aging 

[28], [29] It is known that lipofuscin is inversely correlated with longevity, 

and as we mentioned above lipofuscin and oxidative stress have been 

correlated with some age-related diseases, going to insights into these 

finding,  and ask what should be the relation between lipofuscin, oxidative 

stress, and aging?,  as we have shown in (Fig.1 ) the process should be 

starting first with oxidative stress  which will promote and enhance lipofuscin 

formation, the oxidative stress may is triggered by a deficiency in 

antioxidants and an increasing in ROS production but there is another 

pathway which starts first with impaired in cellular proteostasis and 

eventually leads to lipofuscin formation and accumulation which will 

enhance the production of ROS [6], [8], [12], [19], [30]–[32]  
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Fig.1. A possible mechanistical aspect of the combination of lipofuscin, 

oxidative stress and aging– modified after [6], [8], [12], [19], [30]–[32]. 

 

Also lipofuscin formation may enhanced by free iron which induced or 

participated in oxidative stress  and it has been reported that free iron is associated 

with several  neurodegenerative diseases, including Alzheimer's disease and 

Parkinson's disease which consider to be also as aging disease  [33], [34]  it have 

been reported  experimentally in rats,  where is lipofuscin formation induced via 

free iron as injected into intralumbar [35]  going into details of every process we 

may conclude that impairments in antioxidants play a significant role in lipofuscin 

formation  as it resulting in oxidative stress or oxidative damage finally this 

oxidative stress lead to lipofuscin formation, but moved back and ask from where 

these impairments in antioxidants occur and why it occur first it must be a balance 

in  antioxidants and free radicals, without this balance, the oxidative stress will 

exactly happen, because antioxidant known as a defense mechanism against 

oxidative stress, Antioxidants is divided into two more categories Enzymatic and 

Non- Enzymatic, Enzymatic one is like Superoxide dismutase, Catalase, 

Glutathione systems, which are essentials in protecting cells from oxidative stress  

on the other hand there are some and Non- Enzymatic like Ascorbic acid, 

Glutathione, Melatonin, Vitamin E, Uric acid  [36], taking  into account the 
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dietary antioxidants like Polyphenols which found in fruits and vegetables and tea 

can delay aging process and involved in the protection from chronic pathological 

disease which induced via oxidative stress  [37]–[39]  an example of  antioxidant 

defense and aging  is a mild cognitive impairment which  considered to be a stage 

between cognitive  decline of normal aging and decline of dementia and it 

correlated with propagation of Alzheimer's disease, a study demonstrated a 

positive correlation between the decreased antioxidant defense and increased lipid 

peroxidation in MCI and AD patients [40]. 

Factors may lead to impaired antioxidants  

1- Genetics 

Some SNPs in antioxidant genes have been reported to impaired 

antioxidants in several diseases like obesity [41], inflammatory bowel disease[42], 

Hypertension ‘silent killer’ which is considered to be a risk factor for 

cardiovascular disease and kidney failure, coronary artery disease[43]–[45], 

Prostate Cancer [46] which older people are more likely to have it[47], the 

obstructive pulmonary disease [48]which could be considered a disease of 

accelerated aging [49], [50].   

2- Diet  

Eating antioxidant containing food, may protecting from oxidative stress  

which consider to be risk factor for aging, age-related disease and  chronic 

diseases,  the core of diet not only due to it is  nutritional value of some vitamins 

which considered to be antioxidants  but also due to it is ability to modulate gut 

microbiome which is important factor in antioxidant activity, an example of this is 

Carotenoids, which defined as plant pigments responsible for red, yellow and 

orange pigments in many fruits and vegetables, it considered as non-enzymatic 

antioxidants several studies has been  some impact of it on health [51] [52] a 

review article  summarizing the impact of Carotenoids from clinical trials against 

skin, eye, hepatic, cardiovascular diseases and some types of cancer reported that 

Carotenoids have shown a significant role in the body's defense against reactive 

oxygen species [53] and may protect from age-related diseases[54],  one of  

carotenoids  is Lycopene  which observed in Parkinson’s disease and vascular 

dementia patient in low amount  [55]  there is a growing evidence that lycopene 

may protect from cardiovascular disease [56]–[60] also b-carotene was observed 

in low amount in serum of patients with Symptomatic atherosclerosis[61] 

dysbiosis which defined as  a  microbial imbalance in the gut which can lead to 

various disease as Alzheimer’s disease, Cardiovascular disease, obesity,  

inflammatory bowel disease [62]  these diseases also have been also  linked with 

oxidative stress [63]–[66] Carotenoids can delaying the development of  dysbiosis 

and protecting gut homeostasis [67]  . higher dietary  of non-enzymatic 
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antioxidant capacity was  correlated  with decreased risk of death from 

cardiovascular disease, heart disease, and cerebrovascular disease suggesting that 

may help to achieve longevity as reported in the study on Japanese adults 

population [68] also microbiota can effect on mitochondria and inducing oxidative 

stress [69]  take into account that psychological stress like depression may induce 

oxidative stress and accelerate aging [70]–[73] 

General aspects of the genetics of the longevity-related processes 

All process in the cell is controlled genetically, by various pathways of gene 

expression, however, the environment also has an effect on this expression and it 

may be various among individuals, which is called Epigenetics or gene-

environment interaction, even noncoding sequence like small noncoding RNA 

plays a role in aging and longevity, longevity is a very complicated process it is 

controlled genetically and also environmentally additionally there is a role for 

population genetics in longevity. 

Concerning genetics and the evolution theory of aging, the main theory of 

aging in evolutionary theories of aging is the theory of programmed cell death 

which first introduced by Dr. A. R. Wallace who proposed that individuals are 

programmed to die as a result of the force of natural selection, Dr. Williams also 

proposed a theory of  antagonistic pleiotropy, which defines as “ one gene control 

for more one trait one of these traits is beneficial to the organism's fitness”, but 

after reaching  to reproductive success  an adverse effect of this genes are 

occurred [74], also  the theory of mutation accumulation which introduced by 

Medawar [75], [76] moreover “Hamilton’s forces of natural selection” which  first 

introduced as a theoretically work represented by  mathematical equations  which 

display that forces  of natural selection were reduced with age, then confirmed 

experimentally using Drosophila moreover “Hamilton’s forces of natural 

selection” can be used to manipulate experimentally the cessation of aging as 

reviewed in [77]     

Thus, it is generally believed that longevity is a very complex trait, which 

controlled by various factors genetic and non- genetic factors, the non- genetic 

factors is an  environmental factor, the genetics factors are controlled by many 

loci, and also noncoding sequence may a has a role in longevity, as there is 

growing evidence that genetics influence on longevity [78]–[81]  

An additional number of studies has been successful in identifying a number 

of life span genes in short-lived invertebrate models as C. elegans, D. 

melanogaster,  and  S. cerevisiae,  by knocking out of genes approach  but in 

mammals forward genetics were the used approach used to identify some ageing 

loci  as reviewed in [82]  one of first  genome wide association study involved in 

longevity  was done  by using a 308 individuals belonging to 137 sibships, and 

they noted that chromosome 4 at D4S1564 region linkage with longevity  [83]  
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study also done by  Dr. Reed and his colleagues  demonstrated  the association 

between  locus near D4S1564  and healthy aging [84]  Dr. Puca group  continued 

the research and they identified  a SNP in microsomal transfer protein this protein 

helps produce beta-lipoproteins [85], however this findings later was not proven 

and the opposite has been proven, there is no association between  microsomal 

transfer protein and longevity  [86], [87] . among past years there are some 

examples of SNPs  that have been identified   SNPS were  identified  in many 

genes like  TP73, LMNA, NRXN1, COL6A3, RBMS3, CTDSPL, MB21D2, 

SDAD1 RCBTB1, RCBTB1 MAPKAP1, PRKCB, APOE and  CDH4 as 

reviewed in [82]  one of most important gene influence on longevity is a APOE 

gene which is responsible for making  apolipoprotein E Protein  this protein 

combines with fats to form lipoprotein  [88] ε4 allele of this gene is associated 

with decreasing in odds [89] [90] while also  ε4 allele was reported to associate 

with some ageing related disease as Alzheimer's disease  [91]–[94] and Ischemic 

cardiovascular [95] however some another study reported  the opposite [96] and 

cognitive dysfunction in multiple  sclerosis  [97]  however there is a study 

reported that there is no association between cognitive dysfunction and  

impairment  in multiple sclerosis and ε4 allele [98] example of another important 

gene is a FOXO3A gene  which functions as a trigger for apoptosis, it has been 

reported that this gene is associated with longevity in germen and Italian and 

chinses and Japanese population  [99]–[102]In addition to, a functional RNA 

molecule that is transcribed from DNA but not translated into proteins which are 

called noncoding RNA,  such as microRNAs, small interfering RNAs, long  non-

coding RNAs, several studies indicated that noncoding RNA plays a role in 

several age-related diseases  like Alzheimer's disease [103],  Ischemic Stroke 

[104], myocardial infarction[105], cancer [106], type 2 diabetes [107], 

hypertension [108], osteoarthritis [109], Cataract [110], atherosclerosis[111] and 

another diseases [112]   

Another example of epigenetics is DNA methylation, which is may occur at 

CpG islands located with promoter regions some of the studies reported some 

genes showing age-related DNA  methylation like VASHI, RAD50, CD4,  APC, 

P16,  HIC1, WT1, OGG, DLC1, FGF8, LOX, DRB1, INFG, LEP, LHX5 also 

there are  some environmental  factors may leading to DNA methylation as 

chemicals and pollutants like mercury, cadmium, lead, arsenic, chromium, 

smoke and also diet as high-fat diet as reviewed in [113]  
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Longevity, aging, and the microbiome  

It is known nowadays that the microbiome has an impact on health and the 

alteration of its composition may associate with the healthy body or diseased one 

[114], it was reported from a variety of animal models including nematodes and 

monkey even humans that reduction in food intake and prevent malnutrition 

resulting in extends lifespan [115] microbiome of old individuals was different of 

younger individuals where the microbiome of old one's shifts to Bacteroidetes 

[116]  low abundance of Coprococcus and Faecalibacterium were reported in 

Italian and Chinese centenarians population  [117]–[121]Several studies have 

been liked several age-related diseases and the alteration of the composition of the 

gut microbiome, like Alzheimer's disease in human and animal model, Firmicutes 

and Bacteroidetes phylum were more abundant in Alzheimer's disease, in 

particular, in human the following genera were more abundant Blautia, 

Bacteroides, Alistipes, Phascolarctobacterium, Gemella. [122], [123] while in 

Parkinson's disease patients, Lactobacillus was more abundant while  Clostridium 

coccoides group and Bacteroides fragilis group were lower than controls [124], 

Bacteroidetes and  Prevotellaceae were  less abundant, Enterobacteriaceae were 

more abundant in fecal samples from Parkinson's disease patients [125]   

Also in a cardiovascular  disease like Symptomatic atherosclerosis, 

Collinsella was enriched in  patients with Symptomatic atherosclerosis where 

Eubacterium, Roseburia were found in low abundance [61], patients with stroke 

and transient ischemic attack show a high abundance of Enterobacteriaceae, 

Proteobacteria  Escherichia/Shigella,  and low abundance in Bacteroidetes, 

Bacteroidales, Bacteroidaceae, Bacteroides [126]  Firmicutes and Bacteroidetes 

were found in high abundance while Lactobacillales, Bacteroides and Prevotella 

found in low abundance  in coronary artery disease patients [127], take into 

account that genetics may influence of  gut microbiome [128] and maybe 

influence more than environment as reported experimentally in a murine 

model[129]  

The aforementioned aspects could be also related o the fact that there can 

be a relationship between the gut microbiome, and longevity since gut 

microbiome can be alternated in some conditions including diseases and diet 

[130]–[134]  
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Conclusions 

Genetics is not the only the factor that influences on longevity and aging 

however it considers to be as important while other factors take into account 

including environment as gene-environment interaction and lifestyle as a diet 

which strongly effects on the gut microbiome and maintaining gut microbiome 

homeostasis is considered to be an important factor for longevity based on our 

review we can reveal a new theory of aging called “ genetics, microbiome and 

environment theory of aging and longevity ” which demonstrate all possible 

aspects interact together to lead to longevity and aging see Fig.2 oxidative stress 

seems to be so harmful to occur and it may lead to various impairments in the 

body it is controlled by both genetic and non-genetics factors which is an 

environmental condition, avoiding oxidative stress is the best way to reach 

longevity even if there a genetic susceptibility to induce it but working on 

environmental effect is considered to be important so if no escape from occurring 

oxidative stress trying to late the process, will affect on longevity and may 

increase it. Thus, in our future studies, we will better concentrate our efforts in the 

understanding of how the connections between lipofuscin and aging are affecting 

the digestive manifestations, with a special focus on the gut complex 

functionality. 
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Fig.2. A schematic approach for the “ genetics, microbiome and environment theory of 

aging and longevity “ complex interactions – modified after [26], [80], [119], [128], 

[130], [135]–[150]  
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